国家电网有限公司 高校毕业生招聘考试大纲 (电工类专业 2026 版)

一、公共与行业知识(20%)

类别	序号	主要知识结构
一般能力	1	言语理解:运用语言文字进行分析理解与交流沟通的能力
	2	信息洞察: 快速理解或理清局部问题影响因素的能力
	3	思维策略:分析问题时思路的清晰程度、严密程度,以及解决问题时是否具有创新性、灵活性,能够举一反三、多样化解决问题的能力
	4	资料分析:主要包括文字类资料、表格类资料、图形类资料和综合类资料四种基本形式,综合考查应试者的阅读、理解、分析、比较、计算和判断处理等方面的能力
企业文化、电力 与能源战略	5	参见《国家电网有限公司高校毕业生招聘考试公共与行业 知识题库》
形势与政策	6	中国共产党和中国政府在现阶段的重大方针政策,参见《国家电网有限公司高校毕业生招聘考试公共与行业知识题库》 2025年1月至今国际、国内重大时事
		4040 牛1月土プ四欧、四円里入門事

二、专业知识(80%)

(一) 电工类研究生

专业方向	序号	主要知识点
	1	电力网元件的模型和参数
	2	电力系统潮流分析与计算
	3	电力系统经济运行
3	4	电力系统简单故障分析与计算
电网技术基础	5	电力系统稳态频率与电压调节
	6	电力系统暂态分析
点	7	电力系统继电保护的基本概念和要求
	8	交流输电线路保护原理
93	9	变压器的主要故障类型和保护配置
72	10	电气设备的类型、原理与选型
	11	电气主接线的形式、特点及倒闸操作
	12	限制短路电流的方法
	13	特高压交直流输电的基本概念及设备
电力工程基础	14	传统直流输电的基本原理、数学模型和控制
	15	电介质的基本特性及放电理论
	16	输变电设备的绝缘及其放电特性
- 13	17	电气设备绝缘特性的测试方法及作用
	18	电力系统过电压的种类及其防护措施
	19	电力系统安全稳定的基本要求
	20	电力系统规划的基本原则和方法
由力系统八年	21	电力网络分析的一般方法
电力系统分析	22	同步发电机组和负荷模型
	23	风电、光伏发电原理、建模与并网分析
	24	电力系统最优潮流的数学模型及算法

	25	电力系统状态估计的基本概念
	26	电力系统静态安全分析的基本概念
	27	电力系统暂态稳定分析
 电力系统分析	28	电力系统小扰动稳定分析
电力系统分 例	29	电力系统电压与频率稳定的基本概念和方法
(30	电力系统宽频振荡的基本原理和抑制方法
	31	电力系统安全自动装置基本原理与配置
S	32	碳达峰、碳中和的基本概念及措施
2/	33	电力市场的基本概念、原理和国内建设进展
	34	近年国外大停电事故原因分析
311	35	电力系统新型储能基础
新型电力系统	36	柔性直流输电的基本概念和原理
GR	37	柔性交流输电系统的类型及工作原理
	38	综合能源系统基础
	39	"大云物移智链"、大模型、数字孪生等新技术
	40	新型电力系统的前沿进展
•		

国家电网 STATE GRID

(二) 电工类本科生

专业方向	序号	主要知识点
	1	电路基本定律和线性电路分析方法
	2	一阶和二阶电路的时域分析
	3	正弦稳态电路的分析与计算方法
	4	非正弦周期电流电路的分析
70	5	三相交流电路分析
23/	6	二端口网络的基本概念、方程和参数
2/	7	电路的频率响应
电工技术基础	8	电力电子器件的原理及特性
स्र	9	换流电路的结构、工作原理及特性
0//	10	变流电路的结构、工作原理及特性
70.1	11	PWM 控制技术
	12	电力电子技术在新型电力系统中的应用
	13	变压器原理、结构与特性
	14	异步电机运行原理与特性、起动与调速及运行方式
	15	同步电机原理、结构与特性、起动与调速及运行方式
	16	电力系统基本概念与方法
	17	电力系统各元件特性及数学模型
	18	电力系统潮流分析与计算
	19	电力系统有功功率和频率调整
由力更统八托	20	电力系统无功功率和电压调整
电力系统分析	21	电力系统故障分析与计算
	22	电力系统稳定的基本概念
	23	电力系统静态稳定分析(结合工程实例)
	24	电力系统暂态稳定分析(结合工程实例)
	25	新型电力系统构成与运行特点

	I	
	45	电力系统内部过电压机理、类型及防护措施
高电压技术	44	电力系统防雷与接地
	43	线路和绕组中的波过程
	42	电气设备绝缘试验
	41	输变电设备主要绝缘形式与绝缘失效机理
	40	电介质的主要电气特性
	39	双绕组、多绕组、自耦变压器的特点及运行分析
70	38	同步发电机的运行分析
电气设备及主系统	37	电气设备的选择
中层识权卫士系统	36	限制短路电流的方法
7	35	电气主接线的形式、特点及倒闸操作
3/	34	电气设备的类型及原理
	33	新型电力系统中继电保护面临的挑战
	32	数字式保护装置基础
	31	输电线路的自动重合闸
电力系统继电保护	30	输电线路、变压器、母线的主要故障特点和保护配置
中土石砂炒中 加油	29	纵联保护的工作原理、动作特性和整定计算
	28	距离保护的工作原理、动作特性和整定计算
	27	阶段式电流保护配合原理、构成和整定计算
	26	电力系统继电保护的基本概念和要求

STATE GRID

(三) 电工类专科生

专业方向	序号	主要知识点
	1	电路的基本概念与基本定律
	2	电阻电路的等效变换与分析
	3	叠加原理、戴维宁和诺顿定理
电工技术基础	4	三相交流电路的分析和计算
电工1人小垄仙	5	交/直流基本电参数的测量及仪表使用
2/	6	变压器的结构、原理及特性试验
	7	同步电机的结构、原理及运行特性
点	8	异步电机的结构、原理及运行特性
	9	电力系统的基本概念及应用
167	10	新型电力系统构成与运行特点
	11	电力系统各元件特性及数学模型
电力系统分析	12	简单电力系统潮流分析
电力系统力机	13	电力系统有功功率和频率调整
	14	电力系统无功功率和电压调整
	15	电力系统故障的基本概念及简单故障分析
	16	电力系统稳定的基本概念
	17	电力系统继电保护的基本概念和要求
	18	电网的电流保护原理、构成及校验
电力系统继电保护	19	距离保护的工作原理、动作特性及检验
	20	微机保护原理、构成及校验
	21	电力系统常用自动装置的作用、要求和原理
	22	变压器的故障类型、保护配置和原理
	23	母线的故障类型和保护配置

	24	发电厂、变电站的基本类型和特点
	25	电气设备的类型、工作原理和运行维护
	26	电力系统接地及其运行方式
	27	电气主接线的形式、特点及倒闸操作
电气设备及主系统	28	电力作业现场安全风险防范及方法要点
	29	在电气设备上工作保证安全的组织措施和技术措施
	30	断路器的结构、原理及运行分析
	31	互感器的结构、原理及运行分析
	32	配电装置的类型、特点及应用
	33	输配电网关键技术及其应用
西门	34	电力变压器的运行分析
	35	电网异常及故障处理
高电压技术	36	电介质的电气特性
	37	输变配电设备绝缘及运行维护
	38	输变配电设备高压试验
	39	电力系统雷电过电压及其限制措施
	40	电力系统内部过电压及其限制措施

